Exploring Strange Origin of Dirac Neutrino Masses at Hadron Colliders

arxiv:2111.08020, submitted to PRD

Matthew Sullivan¹, Hooman Davoudiasl¹, Ian M. Lewis²

> ¹Brookhaven National Laboratory ²University of Kansas

BNL Snowmass Retreat

Neutrino Masses

- The Standard Model does not include right-handed singlet neutrino fields, and so has massless neutrinos
 - With right-handed singlet neutrinos, the mass-generating terms would be allowed
- The existence of neutrino oscillation implies that (at least two) neutrino masses are non-zero
- \bullet Cosmological bounds place an upper limit on the sum of neutrino masses of $\sim 0.12~\text{eV}$
- Why do neutrinos have such extremely small masses?

A Different Approach to Neutrino Masses

- We will accept the existence of right-handed singlet neutrinos to support Dirac neutrino masses
- The following effective operator, with Standard Model and singlet neutrino fields only, can generate Dirac neutrino mass:

$$O_D = \zeta \frac{[\bar{Q}^i \, s] \epsilon^{ij} [\bar{L}^j \, \nu_R]}{M_D^2} + \text{H.C.}$$
 (1)

- ullet The light quark condensates $\langle ar q q
 angle \sim -(300~{
 m MeV})^3$ provides EWSB
- ullet Generating ~ 0.1 eV neutrino masses requires $M_D \sim 16$ TeV
 - π^+ , K^+ decays to $e^+\nu$ constrain similar scale operators with d and u quarks, thus necessitating the use of the strange quark
- So: how can we generate this sort of operator?

A 2HDM Model

- ullet We use two Higgs doublets: H_1 and H_2
- H_1 will be the sole doublet that gets a vev
 - \bullet It generates quark, charged lepton, W/Z masses exactly as in the SM
 - The Z_2 symmetry forbids the usual sort of neutrino mass terms
- H₂ will couple only to neutrinos and the strange quark
 - ullet We will call the strange quark Yukawa coupling $\kappa_{
 m s}$
 - For an H_2 mass of M_{H_2} , the mass-basis neutrino Yukawa couplings will be

$$\kappa_{\nu,i} = \frac{M_{H_2}^2}{\kappa_s \langle \bar{s}s \rangle} m_i \tag{2}$$

• The matrix of neutrino Yukawa couplings is then $V_{PMNS}K_{\nu}$ with $K_{\nu}=diag(\kappa_{\nu,1},\kappa_{\nu,2},\kappa_{\nu,3})$

Flavor Physics

- ullet $D-ar{D}$ mixing is the primary constraint on κ_s
 - These constraints beat the reach of the LHC; need to go to 100 TeV
- ullet $D_S^+
 ightarrow e^+
 u$ can constrain this general mass generating mechanism
 - Current limits come from Belle; we don't expect Belle II to approach sensitivity to our model

Charged Higgs Branching Ratios

- Charged Higgs can decay to dijet, or charged lepton and neutrino
- The branching ratios $BR(H \to e\nu, \mu\nu, \tau\nu)$ depend on mass hierarchy, slightly on absolute neutrino mass scale
 - ullet In normal hierarchy, $\mu
 u$ is the dominant lepton final state
 - ullet In inverted hierarchy, e
 u is the dominant lepton final state

100 TeV Discovery Potential

- \bullet Dijets and $l\nu$ provide orthogonal discovery potential
- Shown: normal hierarchy, saturating cosmological neutrino mass

Effects of the Mass Hierarchy

 The neutrino mass hierarchy and absolute mass scale matter for the collider phenomenology

Conclusions

- Chiral condensates in QCD provide another (small) source of electroweak symmetry breaking
- A heavy Higgs doublet can connect this symmetry breaking to the neutrino sector
- Strange quark couplings are a viable path for neutrino mass with interesting collider signatures
 - Dijet signal
 - Lepton plus missing energy
- Charged Higgs branching ratios are sensitive to the neutrino mass hierarchy

Thank you!

Backup

A 2HDM Flavor Model

 We have the following general Yukawa sector (flavor indices suppressed):

$$\sum_{a=1}^{2} -\lambda_{u}^{a} \bar{Q} \epsilon H_{a}^{*} u - \lambda_{d}^{a} \bar{Q} H_{a} d - \lambda_{\nu}^{a} \bar{L} \epsilon H_{a}^{*} \nu_{R} - \lambda_{\ell}^{a} \bar{L} H_{a} \ell + \text{H.C.}$$
(3)

- We introduce a Z_2 symmetry under which H_2 and ν_R are odd, other SM fields are even
- This Z_2 eliminates neutrino couplings to H_1 and the ordinary fermion mass generation
- But it also eliminates non-neutrino couplings to H₂, including the s
 quark couplings that we want
 - We can spontaneously break the Z_2 with a scalar ϕ , and use a dim 5 operator like $\frac{\phi H_2 \bar{Q}s}{\Lambda}$ where $\langle \phi \rangle \neq 0$
 - This can come from e.g. a UV model with a heavy vector-like quark with the quantum numbers of the right-handed s